Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 47, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413593

RESUMO

MVA-based monovalent eastern equine encephalitis virus (MVA-BN-EEEV) and multivalent western, eastern, and Venezuelan equine encephalitis virus (MVA-BN-WEV) vaccines were evaluated in the cynomolgus macaque aerosol model of EEEV infection. Macaques vaccinated with two doses of 5 × 108 infectious units of the MVA-BN-EEEV or MVA-BN-WEV vaccine by the intramuscular route rapidly developed robust levels of neutralizing antibodies to EEEV that persisted at high levels until challenge at day 84 via small particle aerosol delivery with a target inhaled dose of 107 PFU of EEEV FL93-939. Robust protection was observed, with 7/8 animals receiving MVA-BN-EEEV and 100% (8/8) animals receiving MVA-BN-WEV surviving while only 2/8 mock vaccinated controls survived lethal challenge. Complete protection from viremia was afforded by both vaccines, with near complete protection from vRNA loads in tissues and any pathologic evidence of central nervous system damage. Overall, the results indicate both vaccines are effective in eliciting an immune response that is consistent with protection from aerosolized EEEV-induced disease.

2.
Commun Biol ; 5(1): 1380, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526890

RESUMO

Although most SARS-CoV-2 infections are mild, some patients develop systemic inflammation and progress to acute respiratory distress syndrome (ARDS). However, the cellular mechanisms underlying this spectrum of disease remain unclear. γδT cells are T lymphocyte subsets that have key roles in systemic and mucosal immune responses during infection and inflammation. Here we show that peripheral γδT cells are rapidly activated following aerosol or intra-tracheal/intra-nasal (IT/IN) SARS-CoV-2 infection in nonhuman primates. Our results demonstrate a rapid expansion of Vδ1 γδT cells at day1 that correlate significantly with lung viral loads during the first week of infection. Furthermore, increase in levels of CCR6 and Granzyme B expression in Vδ1 T cells during viral clearance imply a role in innate-like epithelial barrier-protective and cytotoxic functions. Importantly, the early activation and mobilization of circulating HLA-DR+CXCR3+ γδT cells along with significant correlations of Vδ1 T cells with IL-1Ra and SCF levels in bronchoalveolar lavage suggest a novel role for Vδ1 T cells in regulating lung inflammation during aerosol SARS-CoV-2 infection. A deeper understanding of the immunoregulatory functions of MHC-unrestricted Vδ1 T cells in lungs during early SARS-CoV-2 infection is particularly important in the wake of emerging new variants with increased transmissibility and immune evasion potential.


Assuntos
COVID-19 , Animais , COVID-19/metabolismo , SARS-CoV-2 , Subpopulações de Linfócitos T , Inflamação/metabolismo , Primatas
3.
PLoS Pathog ; 18(7): e1010618, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789343

RESUMO

The novel coronavirus SARS-CoV-2 emerged in late 2019, rapidly reached pandemic status, and has maintained global ubiquity through the emergence of variants of concern. Efforts to develop animal models have mostly fallen short of recapitulating severe disease, diminishing their utility for research focusing on severe disease pathogenesis and life-saving medical countermeasures. We tested whether route of experimental infection substantially changes COVID-19 disease characteristics in two species of nonhuman primates (Macaca mulatta; rhesus macaques; RM, Chlorocebus atheiops; African green monkeys; AGM). Species-specific cohorts were experimentally infected with SARS-CoV-2 by either direct mucosal (intratracheal + intranasal) instillation or small particle aerosol in route-discrete subcohorts. Both species demonstrated analogous viral loads in all compartments by either exposure route although the magnitude and duration of viral loading was marginally greater in AGMs than RMs. Clinical onset was nearly immediate (+1dpi) in the mucosal exposure cohort whereas clinical signs and cytokine responses in aerosol exposure animals began +7dpi. Pathologies conserved in both species and both exposure modalities include pulmonary myeloid cell influx, development of pleuritis, and extended lack of regenerative capacity in the pulmonary compartment. Demonstration of conserved pulmonary pathology regardless of species and exposure route expands our understanding of how SARS-CoV-2 infection may lead to ARDS and/or functional lung damage and demonstrates the near clinical response of the nonhuman primate model for anti-fibrotic therapeutic evaluation studies.


Assuntos
COVID-19 , Aerossóis , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Macaca mulatta , SARS-CoV-2
4.
Viruses ; 14(4)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35458496

RESUMO

The inhalation of ambient SARS-CoV-2-containing bioaerosols leads to infection and pandemic airborne transmission in susceptible populations. Filter-based respirators effectively reduce exposure but complicate normal respiration through breathing zone pressure differentials; therefore, they are impractical for long-term use. OBJECTIVES: We tested the comparative effectiveness of a prototyped miniaturized electrostatic precipitator (mEP) on a filter-based respirator (N95) via the removal of viral bioaerosols from a simulated, inspired air stream. Methods: Each respirator was tested within a 16 L environmental chamber housed within a Class III biological safety cabinet within biosafety level 3 containment. SARS-CoV-2-containing bioaerosols were generated in the chamber, drawn by a vacuum through each respirator, and physical particle removal and viral genomic RNA were measured distal to the breathing zone of each device. MEASUREMENTS AND MAIN RESULTS: The mEP respirator removed particles (96.5 ± 0.4%), approximating efficiencies of the N95 (96.9 ± 0.6%). The mEP respirator similarly decreased SARS-CoV-2 viral RNA (99.792%) when compared to N95 removal (99.942%), as a function of particle removal from the airstream distal to the breathing zone of each respirator. CONCLUSIONS: The mEP respirator approximated the performance of a filter-based N95 respirator for particle removal and viral RNA as a constituent of the SARS-CoV-2 bioaerosols generated for this evaluation. In practice, the mEP respirator could provide equivalent protection from ambient infectious bioaerosols as the N95 respirator without undue pressure drop to the wearer, thereby facilitating its long-term use in an unobstructed breathing configuration.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Humanos , RNA Viral , Eletricidade Estática , Ventiladores Mecânicos
5.
J Infect Dis ; 226(9): 1588-1592, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35429402

RESUMO

Breakthrough gastrointestinal COVID-19 was observed after experimental SARS-CoV-2 upper mucosal infection in a rhesus macaque undergoing low-dose monoclonal antibody prophylaxis. High levels of viral RNA were detected in intestinal sites contrasting with minimal viral replication in upper respiratory mucosa. Sequencing of virus recovered from tissue in 3 gastrointestinal sites and rectal swab revealed loss of furin cleavage site deletions present in the inoculating virus stock and 2 amino acid changes in spike that were detected in 2 colon sites but not elsewhere, suggesting compartmentalized replication and intestinal viral evolution. This suggests suboptimal antiviral therapies promote viral sequestration in these anatomies.


Assuntos
COVID-19 , Animais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Monoclonais , Macaca mulatta
6.
Viruses ; 14(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35062281

RESUMO

In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Evolução Molecular , Mutação , Poliproteínas/genética , RNA Viral/genética , Reto/virologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Proteínas Virais/genética
7.
Front Behav Neurosci ; 12: 188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214402

RESUMO

In developing youth, allergic asthma is the most common chronic condition, with 9%-10% of youth affected. Asthma onset during childhood and adolescence is further associated with other health issues, particularly psychiatric conditions. To understand causal mechanisms by which developmental asthma may lead to altered behavior, brain and health trajectories, we developed a mouse model of developmental allergic asthma. In the current study, we tested for potential long-term effects of developmental asthma on adult lung function and behavior and brain gene expression associated with emotion and stress regulation. We manipulated airway inflammation (AI) and methacholine (MCH)-induced bronchospasm (resulting in labored breathing, LB) in young male and female BALB/cJ mice and measured adult outcomes 3 months after final asthma manipulations. Results indicated that allergen exposure, used to cause AI, and which ended on post-natal day 56 (P56), led to persistent lung AI, mucus buildup and gene expression related to allergic asthma 3 months after final allergen exposure. In addition, at this same age, early allergen exposure led to altered brain gene expression related to stress regulation (prefrontal corticotropin releasing hormone receptor 1, Crhr1 and hippocampal glucocorticoid receptor, GR) and serotonin function (brainstem serotonin transporter, SERT). On the other hand, LB events during development led to altered anxiety-related behavior. Importantly, sex and pre-asthma fear-related behavior (ultrasonic vocalization, USV rates) modulated these adult outcomes. Asthma that develops during childhood/adolescence may have long-term impacts on emotion and stress regulation mechanisms, and these influences may be moderated by sex and pre-asthma temperament.

8.
Behav Brain Res ; 326: 244-255, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28284954

RESUMO

Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations.


Assuntos
Ansiedade/etiologia , Asma , Comportamento Animal , Expressão Gênica , Hipocampo/metabolismo , Agonistas Muscarínicos/farmacologia , Pyroglyphidae/imunologia , Fatores Etários , Animais , Asma/induzido quimicamente , Asma/complicações , Asma/imunologia , Asma/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...